ELLIPTIC CURVES MID TERM EXAM

This exam is of $\mathbf{3 0}$ marks and is $\mathbf{3}$ hours long. Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

If you have any questions please call me at $+\mathbf{9 1 9 8 8 0 4 5 9 6 4 2}$ or email me at rameshsreekantan@gmail.com. Please copy the following sentence on the first page of your answer sheet and write your name and signature.

I have not used any unfair or illegal means to answer any of the questions in this exam.

1. Let C be a smooth curve over a field K and D a divisor on C. Without using the Riemann-Roch theorem prove
a. $\mathcal{L}(D)$ is a \bar{K} vector space
b. If $\operatorname{deg}(D) \geq 0$, then

$$
\begin{equation*}
\ell(D)=\operatorname{dim}_{\bar{K}} \mathcal{L}(D) \leq \operatorname{deg}(D)+1 \tag{6}
\end{equation*}
$$

2. Let f be a polynomial of degree d in $K[X]$ where $\operatorname{char}(K)=0$. Let C be the curve given by the affine equation

$$
C: Y^{2}=f(X)
$$

Let $\phi: C \longrightarrow \mathbb{P}^{1}$ be the function given by

$$
\phi((X, Y))=X
$$

Then
a. What is the degree of the map ϕ ?
b. What are the ramification points of ϕ and what are their indices?
c. What is the genus of C ?

3 , Let E / K be an elliptic curve given by Weierstrass equation $F\left(X_{0}, X_{1}, X_{2}\right)=0$. Assume $\operatorname{char}(K) \neq 2,3$. Let $P \in E$ and O the origin.
a. Show that $[3] P=O$ if and only if the tangent line at P intersects E only at P.
b. Show that $[3] P=0$ if and only if the Hessian matrix

$$
\begin{equation*}
H=\left(\frac{\partial^{2} F}{\partial X_{i} \partial X_{j}}\right)_{0 \leq i, j \leq 2} \tag{4}
\end{equation*}
$$

satisfies $\operatorname{det}(H)=0$.
c. Show that $E[3]$ has 9 points.

